An Efficient Class of Weighted-Newton Multiple Root Solvers with Seventh Order Convergence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient family of weighted-Newton methods with optimal eighth order convergence

Based on Newton’s method, we present a family of three-point iterative methods for solving nonlinear equations. In terms of computational cost, the family requires four function evaluations and has convergence order eight. Therefore, it is optimal in the sense of Kung–Traubhypothesis andhas the efficiency index1.682which is better than that ofNewton’s and many other higher order methods. Some n...

متن کامل

A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order

A class of three-step eighth-order root solvers is constructed in this study. Our aim is fulfilled by using an interpolatory rational function in the third step of a three-step cycle. Each method of the class reaches the optimal efficiency index according to the Kung-Traub conjecture concerning multipoint iterative methods without memory. Moreover, the class is free from derivative calculation ...

متن کامل

An Efficient Family of Root-Finding Methods with Optimal Eighth-Order Convergence

We derive a family of eighth-order multipoint methods for the solution of nonlinear equations. In terms of computational cost, the family requires evaluations of only three functions and one first derivative per iteration. This implies that the efficiency index of the present methods is 1.682. Kung and Traub 1974 conjectured that multipoint iteration methods without memory based on n evaluation...

متن کامل

New iterative methods with seventh-order convergence for solving nonlinear equations

In this paper, seventh-order iterative methods for the solution ofnonlinear equations are presented. The new iterative methods are developed byusing weight function method and using an approximation for the last derivative,which reduces the required number of functional evaluations per step. Severalexamples are given to illustrate the eciency and the performance of the newiterative methods.

متن کامل

A modification of Newton method with third-order convergence

In this paper, we present a new modification of Newton method for solving non-linear equations. Analysis of convergence shows that the new method is cubically convergent. Per iteration the new method requires two evaluations of the function and one evaluation of its first derivative. Thus, the new method is preferable if the computational costs of the first derivative are equal or more than tho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym11081054